Published in

Elsevier, Chemical Physics, (449), p. 23-33, 2015

DOI: 10.1016/j.chemphys.2015.01.007

Links

Tools

Export citation

Search in Google Scholar

Phasor plots of luminescence decay functions

Journal article published in 2015 by Mario N. Berberan Santos ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Luminescence decay functions describe the time dependence of the intensity of radiation emitted by electronically excited species. Decay phasor plots (plots of the Fourier sine transform vs. the Fourier cosine transform, for one or several angular frequencies) are being increasingly used in fluorescence, namely in lifetime imaging microscopy (FLIM). In this work, a detailed study of the sum of two exponentials decay function is carried out revealing that sub-exponential, super-exponential and unimodal decays have different phasor signatures. A generalization of the lever rule is obtained, and the existence of an outermost phasor curve corresponding to intermediate-like decays is demonstrated. A study of the behavior of more complex decay functions (sum of three exponentials, stretched and compressed exponentials, phosphorescence with reabsorption and triplet-triplet annihilation, fluorescence with quantum beats) allows concluding that a rich diversity of phasor plot patterns exists. In particular, super-exponential decays can present complex shapes, spiraling at high frequencies. The concept of virtual phasor is also introduced.