Published in

American Chemical Society, Journal of Physical Chemistry Letters, 21(5), p. 3924-3930, 2014

DOI: 10.1021/jz501850u

Links

Tools

Export citation

Search in Google Scholar

Influence of Tetraalkylammonium Cation Chain Length on Gold and Glassy Carbon Electrode Interfaces for Alkali Metal–Oxygen Batteries

Journal article published in 2014 by Iain M. Aldous, Laurence J. Hardwick ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fundamental studies of dioxygen electrochemistry relevant to metal air batteries commonly require conductive supporting salts, such as tetraalkylammonium, to sustain redox processes in nonaqueous electrolytes. Electrochemical analysis of the formation and oxidation of superoxide on glassy carbon and gold working electrodes has shown a decrease in reversibility and lowering of the oxygen reduction rate constant when tetraalkylammonium cation alkyl chain length is increased. Probing interfacial regions on Au using in situ surface enhanced Raman spectroscopy (SERS) provides evidence that this is caused by the changing adsorption characteristics of tetralkylammonium cations under negative potentials. These effects are heightened with longer alkyl chain lengths, therefore reducing the reversibility of superoxide formation and dioxygen evolution. From these observations it can be established that shorter chain tetraalkylammonium cations while retaining necessary conductive support: (1) enhance reversibility and rate of superoxide formation and oxidation and (2) for in situ SERS, have lower preference for adsorption, thus improving experimental detection of superoxide at the Au electrode interface.