Published in

American Chemical Society, Journal of the American Chemical Society, 14(128), p. 4612-4623, 2006

DOI: 10.1021/ja0583214

Links

Tools

Export citation

Search in Google Scholar

Assemblies of Supramolecular Porphyrin Dimers in Pentagonal and Hexagonal Arrays Exhibiting Light-Harvesting Antenna Function

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Porphyrin-based supramolecular macrocyclic arrays were synthesized as mimics of photosynthetic light-harvesting (LH) antennae. Pentameric and hexameric macrocyclic porphyrin arrays EP5 and EP6 were constructed by complementary coordination of m-bis(ethynylene)phenylene-linked zinc-imidazolylporphyrin Zn-EP-Zn. The proton NMR spectra of noncovalently linked N-EP5 and N-EP6 indicate fast rotation of the porphyrin moieties along the ethyne axis. These macrocycles were covalently linked and identified as C-EP5 (6832 Da) and C-EP6 (8199 Da) by mass spectrometry. Fluorescence quantum yields of C-EP2 (10.0%), C-EP5 (10.1%), and C-EP6 (11.0%), even larger than that of the unit coordination dimer C-EP1 (9.3%), were significantly increased from those of the series without the ethynylene linkage. The order of increasing fluorescence quantum yields was parallel to that of decreasing fluorescence lifetimes (C-EP1 (1.65 ns), C-EP2 (1.45 ns), C-EP5 (1.42 ns), and C-EP6 (1.38 ns)), indicating that the radiative decay rate kF increased relative to the other decay rates with an increase in the number of ring components. Based on the exciton-exciton annihilation and anisotropy depolarization times, the excitation energy hopping (EEH) times in these macrocyclic systems were obtained as 21 ps for C-EP5 and 12.8 ps for C-EP6. EEH times depend strongly on the orientation factor of the component transition dipoles in the macrocyclic arrays. The hexagonal macrocyclic array with an orientation of better transition dipole coupling resulted in faster EEH time compared to the pentagonal one.