American Institute of Physics, Journal of Applied Physics, 24(118), p. 245303
DOI: 10.1063/1.4938476
Full text: Download
The wet etching of germanium-tin (Ge1-xSnx) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge1-xSnx is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge1-xSnx surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge0.918Sn0.082 samples. Both root-mean-square roughness and undulation periods of the Ge1-xSnx surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge1-xSnx using APM and may be used for the fabrication of Ge1-xSnx-based electronic and photonic devices.