Published in

De Gruyter, Pure and Applied Chemistry, 8(83), p. 1529-1542, 2011

DOI: 10.1351/pac-con-10-11-12

Links

Tools

Export citation

Search in Google Scholar

Dendron-functionalized multiwalled carbon nanotubes incorporating polyoxometalates for water-splitting catalysis

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Carbon nanotubes (CNTs) are versatile nanomaterials with applications spanning from medicinal chemistry and biology, to electronics as field effect transistors or energy as fuel cells. The major drawback stems from the CNT insolubility in most of the organic and aqueous media, which severely hampers the material processability. To overcome this problem, functionalization of CNTs is generally accomplished by either covalent strategies result-ing in the modification of the CNT backbone via radical reactions, fluorination, and/or cycloaddition reactions, or noncovalent protocols, exploiting multiple weak interactions (hydrophobic, van der Waals, electrostatic) with suitable reagents. Herein, we highlight that a rewarding approach includes a combination of covalent/noncovalent methods, by a tailored synthetic modification of the CNT surface with polycationic dendrimeric chains, fostering the successive decoration with a multimetallic and polyanionic water oxidation catalyst. The outcome is a hybrid nanomaterial with unperturbed CNT electrical properties, in close con-tact with a unique multi-electron catalyst enabling electrocatalytic water splitting with high efficiency at low overpotentials.