Published in

Wiley, Austral Ecology: A Journal of Ecology in the Southern Hemisphere, 8(30), p. 834-843, 2005

DOI: 10.1111/j.1442-9993.2005.01526.x

Links

Tools

Export citation

Search in Google Scholar

Coarse woody debris in Australian forest ecosystems: A review

Journal article published in 2005 by Gemma Woldendorp, Rodney J. Keenan ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Coarse woody debris (CWD) is the standing and fallen dead wood in a forest and serves an important role in ecosystem functioning. There have been several studies that include estimates of CWD in Australian forests but little synthesis of these results. This paper presents findings from a literature review of CWD and fine litter quantities. Estimates of forest-floor CWD, snags and litter from the literature are presented for woodland, rainforest, open forest and tall open forest, pine plantation and native hardwood plantation. Mean mass of forest floor CWD in Australian native forests ranged from 19 t ha−1 in woodland to 134 t ha−1 in tall open forest. These values were generally within the range of those observed for similar ecosystems in other parts of the world. Quantities in tall open forests were found to be considerably higher than those observed for hardwood forests in North America, and more similar to the amounts reported for coniferous forests with large sized trees on the west coast of the USA and Canada. Mean proportion of total above-ground biomass as forest floor CWD was approximately 18% in open forests, 16% in tall open forests, 13% in rainforests, and 4% in eucalypt plantations. CWD can be high in exotic pine plantations when there are considerable quantities of residue from previous native forest stands. Mean snag biomass in Australian forests was generally lower than the US mean for snags in conifer forests and higher than hardwood forest. These results are of value for studies of carbon and nutrient stocks and dynamics, habitat values and fire hazards.