Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Environmental Research Letters, 4(6), p. 044027, 2011

DOI: 10.1088/1748-9326/6/4/044027

Links

Tools

Export citation

Search in Google Scholar

Recent change of vegetation growth trend in China

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Using satellite-derived normalized difference vegetation index (NDVI) data, several previous studies have indicated that vegetation growth significantly increased in most areas of China during the period 1982–99. In this letter, we extended the study period to 2010. We found that at the national scale the growing season (April–October) NDVI significantly increased by 0.0007 yr−1 from 1982 to 2010, but the increasing trend in NDVI over the last decade decreased in comparison to that of the 1982–99 period. The trends in NDVI show significant seasonal and spatial variances. The increasing trend in April and May (AM) NDVI (0.0013 yr−1) is larger than those in June, July and August (JJA) (0.0003 yr−1) and September and October (SO) (0.0008 yr−1). This relatively small increasing trend of JJA NDVI during 1982–2010 compared with that during 1982–99 (0.0012 yr−1) (Piao et al 2003 J. Geophys. Res.—Atmos. 108 4401) implies a change in the JJA vegetation growth trend, which significantly turned from increasing (0.0039 yr−1) to slightly decreasing ( − 0.0002 yr−1) in 1988. Regarding the spatial pattern of changes in NDVI, the growing season NDVI increased (over 0.0020 yr−1) from 1982 to 2010 in southern China, while its change was close to zero in northern China, as a result of a significant changing trend reversal that occurred in the 1990s and early 2000s. In northern China, the growing season NDVI significantly increased before the 1990s as a result of warming and enhanced precipitation, but decreased after the 1990s due to drought stress strengthened by warming and reduced precipitation. Our results also show that the responses of vegetation growth to climate change vary across different seasons and ecosystems.