Published in

American Astronomical Society, Astrophysical Journal, 2(546), p. 1027-1037, 2001

DOI: 10.1086/318304

Links

Tools

Export citation

Search in Google Scholar

Broadband Spectrum of Cygnus X‐1 in Two Spectral States withBeppoSAX

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report on the 0.5-200 keV spectral properties of Cyg X-1 observed at different epochs with the Narrow Field Instruments of the BeppoSAX satellite. The source was in its soft state during the first observation of 1996 June. In the second observation of 1996 September, the source had parameters characteristic to its hard state. A soft X-ray excess, a broad Fe Kα line and Compton reflection are clearly detected in both states. The soft-state broadband continuum is well modeled by a disk blackbody (accounting for the soft excess) and Compton upscattering of the disk photons by a hybrid, thermal/nonthermal plasma, probably forming a corona above the disk (also giving rise to the Compton-reflection component). In the hard state, the primary hard X-ray spectrum can be well modeled by Compton upscattering of a weak blackbody emission by a thermal plasma at a temperature of ~60 keV. The soft excess is then explained by thermal Comptonization of the same blackbody emission by another hot plasma cloud characterized by a low value of its Compton parameter. Finally, we find the characteristic ratio of the bolometric flux in the soft state to that in the hard state to be about 3. This value is much more compatible with theories of state transitions than the previously reported (and likely underestimated) value of 1.5.