Published in

IOP Publishing, Nanotechnology, 33(25), p. 335708, 2014

DOI: 10.1088/0957-4484/25/33/335708

Links

Tools

Export citation

Search in Google Scholar

Multimodal microscopy using 'half and half' contact mode and ultrasonic force microscopy

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Advances in the design and fabrication of multifunctional nanostructured materials require characterization techniques capable of simultaneously mapping multiple material properties with nanoscale resolution. We show that this can be achieved by combining nanomechanical information from ultrasonic force microscopy (UFM) with simultaneously acquired friction force and conductivity measurements from contact mode scanning. This utilizes a 'half and half' approach, where the AFM is operated alternatively in UFM and contact mode, with the switching rate sufficiently fast that simultaneous contact mode and UFM information is acquired at each pixel of an image. We demonstrate the potential of such a multimodal approach through its application to composite systems consisting of graphene islands on a copper surface, single-walled carbon nanotubes (SWNTs) on a silicon oxide substrate, and a graphene epoxy composite. The half and half approach enables the friction force to be measured without topographical cross-talk. Application to the SWNT sample reveals a further advantage; due to the superlubricity of UFM it enables standard contact mode imaging techniques to be applied to delicate samples.