Published in

Taylor and Francis Group, Epigenetics, 10(6), p. 1217-1227

DOI: 10.4161/epi.6.10.17199

Links

Tools

Export citation

Search in Google Scholar

Identification of a DNA methylome signature of esophageal squamous cell carcinoma and potential epigenetic biomarkers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Esophageal squamous cell carcinoma (ESCC) is believed to arise from esophageal mucosa through accumulation of both genetic and epigenetic changes. DNA methylation is a critical epigenetic mechanism involved in key cellular processes and its deregulation has been linked to many human cancers, including ESCC. The aim of this study is to examine the global deregulation of methylation states in ESCC and identify potential early biomarkers. With this purpose, we performed a bead array analysis of more than 800 cancer-related genes in ten ESCC samples, ten matched surrounding tissues and four esophageal mucosa from healthy individuals. Pyrosequencing was used for validation of DNA methylation changes in up to 106 cases and 27 controls. A total of 37 CpG sites were found to be differentially methylated between tumors and surrounding tissues. These CpG sites were significantly enriched in genes related to several pathways including IL-10 anti-inflammatory signaling pathway and cell communication pathway. In addition, by comparing with healthy esophageal mucosa, we identified TFF1 gene as a potential early marker of ESCC. This is the first study to address methylation changes in ESCC in a large set of genes. Methylome analysis is shown as a sensitive and powerful tool to identify molecular players in ESCC. These data should prove to be the reference for future studies identifying potential biomarkers and molecular targets in ESCC.