Published in

Springer (part of Springer Nature), Molecular Breeding, 4(14), p. 455-462

DOI: 10.1007/s11032-004-0902-2

Springer (part of Springer Nature), Molecular Breeding, 4(14), p. 455-462

DOI: 10.1007/s11032-005-0902-x

Links

Tools

Export citation

Search in Google Scholar

Increase of histidine content in Brassica rapa subsp. oleifera by over-expression of histidine-rich fusion proteins

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An approach that enables the increase of the quantity of a specific amino acid in crop plants is reported. Oleosin gene from Arabidopsis thaliana or 30K movement protein gene of Tobacco mosaic virus (TMV; genus Tobamovirus) were cloned under the control of napin or hybrid promoters, and in fusion to synthetic poly-histidine (poly-His) sequences for transformation into spring turnip rape (Brassica rapa subsp. oleifera; synonym to B. campestris). The most stable expression cassettes for the poly-His production prior to the plant transformation were selected by analyzing the protein expression in in vitro translation and in transient plant expression systems using GFP as marker. Expression of the poly-His-constructs in transgenic Brassica rapa plants was analyzed using dot and western blotting and PCR. The constructs were stably expressed in the third generation of the transgenic plant lines. Histidine content was measured from the seeds of the transgenic plants, and some plant lines had more than 20% increase in histidine content compared to wild type. The methodology may be widely applicable to increase the content of any amino acid in crop plants including those encoded by rare codons.