Elsevier, Bioresource Technology, (185), p. 106-115
DOI: 10.1016/j.biortech.2015.02.097
Full text: Download
The objective was to replace synthetic medium by wastewater as a strategy to design low-cost scalable bioanodes. The addition of activated sludge was necessary to form primary bioanodes that were then used as the inoculum to form the secondary bioanodes. Bioanodes formed in synthetic medium with acetate 10 mM provided current densities of 21.9 ± 2.1 A/m2, while bioanodes formed in wastewater gave 10.3 ± 0.1 A/m2. The difference was explained in terms of biofilm structure, electrochemical kinetics and redox charge content of the biofilms. In both media, current densities were straightforwardly correlated with the biofilm enrichment in Geobacteraceae but, inside this family, Geobacter sulfurreducens and an uncultured Geobacter sp. were dominant in the synthetic medium, while growth of another Geobacter sp. was favoured in wastewater. Finally, the primary/secondary procedure succeeded in designing bioanodes to treat food wastes by using wastewater as dilution medium, with current densities of 7 ± 1.1 A/m2.