Published in

Springer Verlag, Trees, 6(20), p. 757-765

DOI: 10.1007/s00468-006-0090-2

Links

Tools

Export citation

Search in Google Scholar

Growth cost and ontogenetic expression patterns of defence in cyanogenic Eucalyptus spp.

Journal article published in 2006 by Jason Q. D. Goodger ORCID, Roslyn M. Gleadow, Ian E. Woodrow
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Plant defences can incur allocation costs and such costs incurred early in ontogeny may result in opportunity costs with effects evident later in life. A unified understanding of the growth cost of defence requires the identification of plants with varying ontogenetic trajectories of preferably resource demanding defences and an appropriate measurement of the growth cost of these defences. To develop such tools, we first compared nitrogen-based chemical defence (cyanogenic glycosides) in juvenile and adult foliage of three species of Eucalyptus (Myrtaceae). We found marked differences between the species, with two having much lower concentrations of foliar cyanogenic glycosides in seedlings compared to adults. We next used seedlings of two species to measure the resource (nitrogen) and growth cost of deploying cyanogenic glycosides. We found evidence that for every 1.0 nitrogen invested in cyanogenic glycosides, 1.49 additional nitrogens were effectively added to the leaves. We also found that deployment of cyanogenic glycosides was associated with a reduction in net assimilation rate (NAR) at constant leaf nitrogen. We did not, however, detect an overall growth cost associated with cyanogenic glycoside deployment because the rise in leaf nitrogen associated with this deployment apparently counteracted the reduction in NAR.