Published in

Wiley, Journal of the American Water Resources Association, 1(39), p. 165-181, 2003

DOI: 10.1111/j.1752-1688.2003.tb01569.x

Links

Tools

Export citation

Search in Google Scholar

Watershed Weighting of Export Coefficients to Map Critical Phosphorous Loading Areas

Journal article published in 2003 by Theodore A. Endreny ORCID, Eric F. Wood
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Export Coefficient model (ECM) is capable of generating reasonable estimates of annual phosphorous loading simply from a watershed's land cover data and export coefficient values (ECVs). In its current form, the ECM assumes that ECVs are homogeneous within each land cover type, yet basic nutrient runoff and hydrological theory suggests that runoff rates have spatial patterns controlled by loading and filtering along the flow paths from the upslope contributing area and downslope dispersal area. Using a geographic information system (GIS) raster, or pixel, modeling format, these contributing area and dispersal area (CADA) controls were derived from the perspective of each individual watershed pixel to weight the otherwise homogeneous ECVs for phosphorous. Although the CADA-ECM predicts export coefficient spatial variation for a single land use type, the lumped basin load is unaffected by weighting. After CADA weighting, a map of the new ECVs addressed the three fundamental criteria for targeting critical pollutant loading areas: (1) the presence of the pollutant, (2) the likelihood for runoff to carry the pollutant offsite, and (3) the likelihood that buffers will trap nutrients prior to their runoff into the receiving water body. These spatially distributed maps of the most important pollutant management areas were used within New York's West Branch Delaware River watershed to demonstrate how the CADA-ECM could be applied in targeting phosphorous critical loading areas.