Published in

Wiley, Chemistry - A European Journal, 45(20), p. 14594-14598, 2014

DOI: 10.1002/chem.201404539

Links

Tools

Export citation

Search in Google Scholar

Unexpected Anion Effect in the Alkoxylation of Alkynes Catalyzed by N-Heterocyclic Carbene (NHC) Cationic Gold Complexes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The intermolecular alkoxylation of alkynes is the oldest application of cationic gold(I) catalysts; however, no systematic experimental data about the role of the anion are available. In this contribution, the role of the anion in this catalytic reaction as promoted by a N-heterocyclic carbene-based gold catalyst, [(NHC)AuX] (X=BARF(-) , BF4 (-) , OTf(-) , OTs(-) , TFA(-) , or OAc(-) ) is analyzed, through a combined experimental (NMR spectroscopy) and theoretical (DFT calculation) approach. The most important factor seems to be the ability to abstract the proton from the methanol during the nucleophilic attack, and such ability is related to the anion basicity. On the other hand, too high coordination power or basicity of the anion worsens the catalytic performance by preventing alkyne coordination or by forming too much free methoxide in solution, which poisons the catalyst. The intermediate coordinating power and basicity of the OTs(-) anion provides the best compromise to achieve efficient catalysis.