Published in

Elsevier, Ultrasound in Medicine and Biology, 9(24), p. 1437-1447, 1998

DOI: 10.1016/s0301-5629(98)00123-9

Links

Tools

Export citation

Search in Google Scholar

Vibration sonoelastography and the detectability of lesions

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Vibration sonoelastography has been developed for the detection of hard lesions in relatively soft tissue. The basic concept is to propagate low-amplitude and low-frequency shear waves (with displacements below 0.1 mm and frequencies typically below 1000 Hz) through deep organs, and displaying the vibration response in real-time using advanced color Doppler imaging techniques. A hard inhomogeneity, such as a tumor, will produce a localized disturbance in the vibration pattern, forming the basis for detection even when the tumor is isoechoic on B-scan images. This paper focuses on the important quantitative issues concerning the detectability or inherent contrast of lesions. The specific factors of lesion size, relative stiffness and vibration frequency are studied using theoretical models, finite element methods and experimental measurements on tissue-mimicking materials. The results indicate that detectability increases with vibration (shear wave) frequency; however, loss mechanisms ultimately limit the penetration of higher vibration frequencies (in the kHz range).