Published in

Elsevier, Catalysis Today, (205), p. 3-9, 2013

DOI: 10.1016/j.cattod.2012.10.009

Links

Tools

Export citation

Search in Google Scholar

Time resolved operando spectroscopic study of the origin of phosphorus induced chemical aging of model three-way catalysts Pd/Al2O3

Journal article published in 2013 by Santhosh Kumar Matam, Mark A. Newton, A. Weidenkaff ORCID, D. Ferri ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The origin of phosphorus (P) induced chemical aging of model three-way catalyst Pd/Al2O3 is studied by transient CO and NO pulses. The fresh catalyst Pd/Al/F (calcined at 500 °C for 4 h) is subjected to thermal treatment in air at 700 °C for 5 h with (7.5P/Pd/Al) and without (Pd/Al/700) P poison. The catalyst surface and reaction dynamics during CO/NO pulses at 300 °C are captured in a single shot by time resolved operando energy dispersive-extended X-ray absorption fine structure (ED-EXAFS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and mass spectrometry (MS). The results reveal the occurrence of Pd redox cycle during the temporal analysis of the catalysts by CO/NO pulses. However a secondary process, presumably PdCx formation, is hampered under these experimental conditions on the P aged catalyst 7.5P/Pd/Al. Additionally on 7.5P/Pd/Al, reactions involving Pd redox cycle are not as efficient as on Pd/Al/700 as evident from ED-EXAFS, MS and DRIFTS data. Furthermore, DRIFTS data show a larger population of isocyanate species (reflected by bands at 2180, 2228 and 2250 cm−1) on Pd/Al/700 than on 7.5P/Pd/Al that exhibits only a single band at 2260 cm−1. The missing low frequency bands at 2180 and 2228 cm−1 are attributed to the clogging of the surface Pd sites by P and formation of AlPO4 species at the expense of a fraction of surface Al3+ sites of the support, respectively. Consequently, the production of CO2 (and also N2) is higher on Pd/Al/700 than on 7.5P/Pd/Al as evident by MS data confirming that the chemical aging caused by P is more detrimental than thermal aging for three-way catalytic efficiency of the model Pd/Al2O3 as reported in [S.K. Matam, et al., Catal. Today 184 (2012) 237].