Dissemin is shutting down on January 1st, 2025

Published in

American Institute of Physics, Journal of Applied Physics, 10(108), p. 104304

DOI: 10.1063/1.3506686

Links

Tools

Export citation

Search in Google Scholar

Morphology and strain of self-assembled semipolar GaN quantum dots in (112¯2) AlN

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

GaN quantum dots (QDs) grown in semipolar (112¯2) AlN by plasma-assisted molecular-beam epitaxy were studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy techniques. The embedded (112¯2)-grown QDs exhibited pyramidal or truncated-pyramidal morphology consistent with the symmetry of the nucleating plane, and were delimited by nonpolar and semipolar nanofacets. It was also found that, in addition to the (112¯2) surface, QDs nucleated at depressions comprising {101¯1} facets. This was justified by ab initio density functional theory calculations showing that such GaN/AlN facets are of lower energy compared to (112¯2). Based on quantitative high-resolution TEM strain measurements, the three-dimensional QD strain state was analyzed using finite-element simulations. The internal electrostatic field was then estimated, showing small potential drop along the growth direction, and limited localization at most QD interfaces.