Published in

Elsevier, Journal of Investigative Dermatology, 8(132), p. 2050-2059, 2012

DOI: 10.1038/jid.2012.117

Links

Tools

Export citation

Search in Google Scholar

A Meta-Analysis of Gene Expression Data Identifies a Molecular Signature Characteristic for Tumor-Stage Mycosis Fungoides

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mycosis fungoides (MF) is the most common type of primary cutaneous T-cell lymphoma (CTCL). To identify a molecular signature characteristic of MF tumor stage, we used a bioinformatic approach involving meta-analysis of publicly available gene expression data sets combined with previously generated gene expression data. Results for a selection of genes were further refined and validated by quantitative PCR and inclusion of additional controls. With this approach, we identified a profile specific for MF tumor stage, consisting of 989 aberrantly expressed genes, the majority of which (718 genes) are statistically significantly more expressed in MF compared with normal skin, inflamed skin, and normal T cells. As expected, the signature contains genes reflecting the highly proliferative characteristic of this T-cell malignancy, including altered expression of cell cycle and kinetochore regulators. We uncovered details of the immunophenotype, suggesting that MF originates from IL-32-producing cells and identified previously unreported therapeutic targets and/or diagnostic markers, for example, GTSF1 and TRIP13. Loss of expression of the NF-κB inhibitor, NFKBIZ, may partly explain the enhanced activity of NF-κB, which is a hallmark of MF and other CTCLs.