Published in

Elsevier, Earth and Planetary Science Letters, 1-2(235), p. 302-314

DOI: 10.1016/j.epsl.2005.04.002

Links

Tools

Export citation

Search in Google Scholar

Variations in tropical convection as an amplifier of global climate change at the millennial scale

Journal article published in 2005 by T. Ivanochko, R. Ganeshram, G. Brummer, G. Ganssen, S. Jung, S. Moreton ORCID, D. Kroon
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The global expression of millennial-scale climatic change during the glacial period and the persistence of this signal in Holocene records point to atmospheric teleconnections as the mechanism propagating rapid climate variations. We suggest rearrangements in the tropical convection system globally affected the concentration and location of atmospheric water vapour and modulated terrestrial and marine emissions of CH4 and N2O, providing a tropical mechanism of amplifying and perpetuating millennial-scale climate changes. A multi-proxy reconstruction reflecting various aspects of the intensity of the Arabian Sea Summer Monsoon shows strong millennial-scale variability over the past 90 kyr in which low intensity is associated with a southern shift of the Intertropical Convergence Zone (ITCZ) and an eastward shift in the equatorial convergence zone. The monsoon reconstruction, which is based on new data from a Somali margin sediment core, is supported by previously reported tropical paleoclimatic records and suggests that global scale millennial climatic variability is in part driven by modulations in the tropical hydrological cycle and tropical emissions of the greenhouse gases CH4 and N2O.