Links

Tools

Export citation

Search in Google Scholar

Size-Controlled Synthesis of Colloidal Gold Nanoparticles at Room Temperature Under the Influence of Glow Discharge

Journal article published in 2009 by Xi Liang, Zhou-Jun Wang, Chang-Jun Liu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Highly dispersed colloidal gold (Au) nanoparticles were synthesized at room temperature using glow discharge plasma within only 5 min. The prepared Au colloids were characterized with UV–visible absorption spectra (UV–vis), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) equipped with an energy dispersion X-ray spectrometer (EDX). UV–vis, XPS and EDX results confirmed that Au3+ ions in HAuCl4 solution could be effectively reduced into the metallic state at room temperature with the glow discharge plasma. TEM images showed that Au nanoparticles were highly dispersed. The size of colloidal Au nanoparticles could be easily tuned in the nanometer range by adjusting the initial concentration of HAuCl4 solution. Moreover, the as-synthesized Au colloids (dav = 3.64 nm) exhibited good catalytic activity for glucose oxidation. The nucleation and growth of colloidal Au particles under the influence of the plasma was closely related with the high-energy electrons generated by glow discharge plasma.