Published in

American Chemical Society, Environmental Science and Technology, 18(48), p. 10904-10911, 2014

DOI: 10.1021/es5028822

Links

Tools

Export citation

Search in Google Scholar

Dehalogenation of Aromatics by Nucleophilic Aromatic Substitution

Journal article published in 2014 by Daniel Sadowsky, Kristopher McNeill, Christopher J. Cramer ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nucleophilic aromatic substitution has been implicated as a mechanism for both the biotic and abiotic hydrodehalogenation of aromatics. Two mechanisms for the aqueous dehalogenation of aromatics involving nucleophilic aromatic substitution with hydride as a nucleophile are investigated using a validated density functional and continuum solvation protocol. For chlorinated and brominated aromatics, nucleophilic addition ortho to carbon-halogen bonds via an anionic intermediate is predicted to be the preferred mechanism in the majority of cases, while concerted substitution is predicted to be preferred for most fluorinated aromatics. Nucleophilic aromatic substitution reactions with the hydroxide and hydrosulfide anions as nucleophiles are also investigated and compared.