Elsevier, Organic Electronics, 2(14), p. 451-456, 2013
DOI: 10.1016/j.orgel.2012.11.034
Full text: Download
Hybrid interfaces between ferromagnetic surfaces and carbon-based molecules play an important role in organic spintronics. The fabrication of devices with well defined interfaces remains challenging, however, hampering microscopic understanding of their operation mechanisms. We have studied the crystallinity and molecular ordering of C60 films on epitaxial Fe/MgO(0 0 1) surfaces, using X-ray diffraction and scanning tunneling microscopy (STM). Both techniques confirm that fcc molecular C60 films with a (1 1 1)-texture can be fabricated on epitaxial bcc-Fe(0 0 1) surfaces at elevated growth temperatures (100–130 °C). STM measurements show that C60 monolayers deposited at 130 °C are highly ordered, exhibiting quasi-hexagonal arrangements on the Fe(0 0 1) surface oriented along the [1 0 0] and [0 1 0] directions. The mismatch between the surface lattice of the monolayer and the bulk fcc C60 lattice prevents epitaxial overgrowth of multilayers.