Links

Tools

Export citation

Search in Google Scholar

Conceptual design of the International Axion Observatory (IAXO)

Journal article published in 2014 by Serkant Ali Çetin, H. ten Kate, K. van Bibber, E. Armengaud, F. T. Avignone, M. Betz, P. Brax, P. Brun, G. Cantatore, J. M. Carmona ORCID, G. P. Carosi, F. Caspers, S. A. Cetin, D. Chelouche, F. E. Christensen and other authors.
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, TAX will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signalto-noise ratio, TAX will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few x 10-12 GeV-1 and thus probing a large fraction of the currently unexplored axion and ALP parameter space. TAX will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling ga, with sensitivity for the first time to values of ga, not previously excluded by astrophysics. With several other possible physics cases, TAX has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, which follows the layout of an enhanced axion helioscope, based on a purpose-built 20 m-long 8-coils toroidal superconducting magnet. All the eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able to focus the signal photons into similar to 0.2 cm(2) spots that are imaged by ultra-low-background Micromegas x-ray detectors. The magnet is built into a structure with elevation and azimuth drives that will allow for solar tracking for similar to 12 h each day.