Published in

Wiley, Journal of Biomedical Materials Research Part A, 4(78A), p. 762-771, 2006

DOI: 10.1002/jbm.a.30790

Links

Tools

Export citation

Search in Google Scholar

Crystallochemistry, textural properties, and in vitro biocompatibility of different silicon‐doped calcium phosphates

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Three silicon-doped calcium phosphates (Si-CaPs) were synthesized by heating precipitated silicon-doped apatite via different thermal treatments. Temperatures of 700 degrees C, 900 degrees C, and 1100 degrees C led to an apatite-glass biphasic material, nanocrystalline Si-doped apatite (SiHA), and Si-doped apatite-alpha tricalcium phosphate biphasic material, respectively. Structure, microstructure, textural properties, and chemical differences were determined for the three bioceramics. Biocompatibility tests were carried out by seeding osteblast-like cells onto the three substrates. Si-CaP treated at 700 degrees C and 900 degrees C led to Ca decrease in the culture media, partially impeding the cell proliferation over them. However, the proliferation capability is restored when additional culture medium is added. Finally, cytotoxicity results indicated that cell damage is much lower in osteblast-like cells seeded onto SiHA and SiHA-alpha tricalcium phosphate samples than in plastic culture control.