Published in

American Physiological Society, American Journal of Physiology: Cell Physiology, 6(286), p. C1353-C1357, 2004

DOI: 10.1152/ajpcell.00493.2003

Links

Tools

Export citation

Search in Google Scholar

Non-cross-bridge calcium-dependent stiffness in frog muscle fibers

Journal article published in 2004 by Bagni Ma, B. Colombini, M. A. Bagni, P. Geiger, R. Berlinguer Palmini ORCID, G. Cecchi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

At the end of the force transient elicited by a fast stretch applied to an activated frog muscle fiber, the force settles to a steady level exceeding the isometric level preceding the stretch. We showed previously that this excess of tension, referred to as “static tension,” is due to the elongation of some elastic sarcomere structure, outside the cross bridges. The stiffness of this structure, “static stiffness,” increased upon stimulation following a time course well distinct from tension and roughly similar to intracellular Ca2+ concentration. In the experiments reported here, we investigated the possible role of Ca2+ in static stiffness by comparing static stiffness measurements in the presence of Ca2+ release inhibitors (D600, Dantrolene, 2H2O) and cross-bridge formation inhibitors [2,3-butanedione monoxime (BDM), hypertonicity]. Both series of agents inhibited tension; however, only D600, Dantrolene, and 2H2O decreased at the same time static stiffness, whereas BDM and hypertonicity left static stiffness unaltered. These results indicate that Ca2+, in addition to promoting cross-bridge formation, increases the stiffness of an (unidentified) elastic structure of the sarcomere. This stiffness increase may help in maintaining the sarcomere length uniformity under conditions of instability.