Published in

American Society for Pharmacology and Experimental Therapeutics (ASPET), The Journal of Pharmacology and Experimental Therapeutics, 1(320), p. 108-116, 2006

DOI: 10.1124/jpet.106.110361

Links

Tools

Export citation

Search in Google Scholar

Licofelone, a Balanced Inhibitor of Cyclooxygenase and 5-Lipoxygenase, Reduces Inflammation in a Rabbit Model of Atherosclerosis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Licofelone, a dual anti-inflammatory drug that inhibits 5-lipoxygenase (LOX) and cyclooxygenase (COX) enzymes, may have a better cardiovascular profile that cycloxygenase-2 inhibitors due to cycloxygenase-1 blockade-mediated antithrombotic effect and a better gastrointestinal tolerability. We examined the anti-inflammatory effect of licofelone on atherosclerotic lesions as well as in isolated neutrophils from whole blood of rabbits compared with a selective inhibitor of COX-2, rofecoxib. We also assessed the antithrombotic effect of licofelone in rabbit platelet-rich plasma. For this purpose, 30 rabbits underwent injury of femoral arteries, and they were randomized to receive 10 mg/kg/day licofelone or 5 mg/kg/day rofecoxib or no treatment during 4 weeks with atherogenic diet in all cases. Ten healthy rabbits were used as controls. Neutrophils and platelets were isolated from peripheral blood of rabbits for ex vivo studies. Licofelone reduced intima/media ratio in injured arteries, the macrophages infiltration in the neointimal area, monocyte chemoattractant protein-1 (MCP-1) gene expression, and the activation of nuclear factor-kappaB in rabbit atheroma. Moreover, licofelone inhibited COX-2 and 5-LOX protein expression in vascular lesions. Rofecoxib only diminished COX-2 protein expression and MCP-1 gene expression in vascular atheroma. Prostaglandin E(2) in rabbit plasma was attenuated by both drugs. Licofelone almost abolished 5-LOX activity by inhibiting leukotriene B4 generation in rabbit neutrophils and prevented platelet thromboxane B2 production from whole blood. Licofelone reduces neointimal formation and inflammation in an atherosclerotic rabbit model more markedly than rofecoxib. This effect, together with the antiplatelet activity of licofelone, suggests that this drug may have a favorable cardiovascular profile.