Published in

Springer Verlag, Ocean Dynamics, 7(65), p. 951-968

DOI: 10.1007/s10236-015-0847-5

Links

Tools

Export citation

Search in Google Scholar

Impact of wind and tides on the Lena River freshwater plume dynamics in the summer season

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Lena plume dynamics in the Lena Delta region of the Laptev Sea are explored in simulations performed with the Finite Volume Coastal Ocean Model (FVCOM) on a mesh with the horizontal resolution 0.4-5 km. The impact of wind and tides on the Lena plume propagation is analysed based on simulations for the summer season of 2008 and also on idealised experiments. All main Lena River freshwater channels (Trofimovskaya, Bykovskaya, Tumatskaya and Olenekskaya) produce buoyant outflows in the summer season. The surface plume buoyancy signature proves to be highly variable in time, especially in case of upwelling favourable wind events. Winds stronger than 6 m s−1 can already turn the dynamics of flows from all main freshwater channels to the wind-driven state. During the summer season, the bulk of freshwater from the Lena River stays in the eastern Laptev Sea because of location of the main Lena River freshwater channels, their large Kelvin numbers and light summer winds. Westward and northward plume excursions are wind-driven, and the model skill in simulating them depends on the available wind forcing. The main mechanism of tidal influence in the freshwater plume zone is through tidally induced mixing, except for the northern vicinity of the delta, where residual circulation may contribute to the plume eastward transport significantly.