Published in

Royal Society of Chemistry, Chemical Science, 2(7), p. 1521-1526

DOI: 10.1039/c5sc03225c

Links

Tools

Export citation

Search in Google Scholar

A highly active nickel electrocatalyst shows excellent selectivity for CO2 reduction in acidic media

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The development of selective electrocatalysts for CO2 reduction in water offers a sustainable route to carbon based fuels and feedstocks. However, molecular catalysts are typically studied in non-aqueous solvents, in part to avoid competitive H2 evolution. [Ni(cyclam)]2+ (1) is one of the few known electrocatalysts that operate in water and 30 years after its report its activity remains a rarely surpassed benchmark. Here we report that [Ni(cyclam-CO2H)]2+ (cyclam-CO2H = 1,4,8,11-tetraazacyclotetradecane-6-carboxylic acid (2)) shows greatly enhanced activity versus 1 for CO production. At pHs < pKa of the pendant carboxylic acid a large increase in catalytic activity occurs. Remarkably, despite the high proton concentration (pH 2), 2 maintains selectivity for CO2 reduction and is believed to be unique in operating selectively in such acidic aqueous solutions.