Published in

Taylor and Francis Group, Molecular Membrane Biology, 4(19), p. 247-255

DOI: 10.1080/09687680210162419

Links

Tools

Export citation

Search in Google Scholar

Interaction of membrane-spanning proteins with peripheral and lipid-anchored membrane proteins: perspectives from protein-lipid interactions (review)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Studies of lipid-protein interactions in double-reconstituted systems involving both integral and peripheral or lipid-anchored proteins are reviewed. Membranes of dimyristoyl phosphatidylglycerol containing either myelin proteolipid protein or cytochrome c oxidase were studied. The partner peripheral proteins bound to these membranes were myelin basic protein or cytochrome c, respectively. In addition, the interactions between the myelin proteolipid protein and avidin that was membrane-anchored by binding to N -biotinyl phosphatidylethanolamine were studied in dimyristoyl phosphatidylcholine membranes. Steric exclusion plays a significant role when sizes of the peripheral protein and transmembrane domain of the integral protein are comparable. Even so, the effects on avidin-linked lipids are different from those induced by myelin basic protein on freely diffusible lipids, both interacting with the myelin proteolipid protein. Both the former and the cytochrome c /cytochrome oxidase couple evidence a propagation of lipid perturbation out from the intramembrane protein interface that could be a basis for formation of microdomains.