Published in

Elsevier, Cell Calcium, 1(59), p. 12-20, 2016

DOI: 10.1016/j.ceca.2015.11.002

Links

Tools

Export citation

Search in Google Scholar

Endoplasmic reticulum and lysosomal Ca2+ stores are remodelled in GBA1–linked Parkinson disease patient fibroblasts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mutations in β-glucocerebrosidase (encoded by GBA1) cause Gaucher disease (GD), a lysosomal storage disorder, and increase the risk of developing Parkinson disease (PD). The pathogenetic relationship between the two disorders is unclear. Here, we characterised Ca2+ release in fibroblasts from type I GD and PD patients together with age-matched, asymptomatic carriers, all with the common N370S mutation in β-glucocerebrosidase. We show that endoplasmic reticulum (ER) Ca2+ release was potentiated in GD and PD patient fibroblasts but not in cells from asymptomatic carriers. ER Ca2+ signalling was also potentiated in fibroblasts from aged healthy subjects relative to younger individuals but not further increased in aged PD patient cells. Chemical or molecular inhibition of β-glucocerebrosidase in fibroblasts and a neuronal cell line did not affect ER Ca2+ signalling suggesting defects are independent of enzymatic activity loss. Conversely, lysosomal Ca2+ store content was reduced in PD fibroblasts and associated with age-dependent alterations in lysosomal morphology. Accelerated remodelling of Ca2+ stores by pathogenic GBA1 mutations may therefore feature in PD.