Published in

American Chemical Society, Molecular Pharmaceutics, 3(6), p. 825-835, 2009

DOI: 10.1021/mp800102c

Links

Tools

Export citation

Search in Google Scholar

Alignment-Free Prediction of a Drug−Target Complex Network Based on Parameters of Drug Connectivity and Protein Sequence of Receptors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

There are many drugs described with very different affinity to a large number of receptors. In this work, we selected drug-receptor pairs (DRPs) of affinity/nonaffinity drugs to similar/dissimilar receptors and we represented them as a large network, which may be used to identify drugs that can act on a receptor. Computational chemistry prediction of the biological activity based on quantitative structure-activity relationships (QSAR) substantially increases the potentialities of this kind of networks avoiding time- and resource-consuming experiments. Unfortunately, most QSAR models are unspecific or predict activity against only one receptor. To solve this problem, we developed here a multitarget QSAR (mt-QSAR) classification model. Overall model classification accuracy was 72.25% (1390/1924 compounds) in training, 72.28% (459/635) in cross-validation. Outputs of this mt-QSAR model were used as inputs to construct a network. The observed network has 1735 nodes (DRPs), 1754 edges or pairs of DRPs with similar drug-target affinity (sPDRPs), and low coverage density d = 0.12%. The predicted network has 1735 DRPs, 1857 sPDRPs, and also low coverage density d = 0.12%. After an edge-to-edge comparison (chi-square = 9420.3; p < 0.005), we have demonstrated that the predicted network is significantly similar to the one observed and both have a distribution closer to exponential than to normal.