Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Industrial Electronics, 6(61), p. 2743-2753, 2014

DOI: 10.1109/tie.2013.2276058

Links

Tools

Export citation

Search in Google Scholar

Decoupled and Modular Harmonic Compensation for Multilevel STATCOMs

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A modular and decoupled approach to achieve harmonic cancellation in a multilevel Static Compensator (STATCOM) is presented in this paper. This work shows that it is possible to split the compensation tasks depending on the frequency components present on the line current that is intended to be compensated by using the superposition principle and the modular features of an H-bridge based multilevel STATCOM. This approach allows the implementation of the topology with dedicated modules in order to decouple and simplify the control algorithms. The H-bridge modules can be implemented with two different kinds of semiconductors: (i) slow switches for fundamental frequency compensation modules and (ii) fast switches for harmonic frequency compensation modules. As the modules meant for harmonic cancellation can self-regulate its dc voltage, they can follow the load requirements and thus operate with minimum power. The theoretical analysis is validated in a laboratory prototype.