Published in

Springer, Climatic Change, 1-2(134), p. 225-239, 2015

DOI: 10.1007/s10584-015-1514-z

Links

Tools

Export citation

Search in Google Scholar

Sensitivity of freshwaters to browning in response to future climate change

Journal article published in 2015 by Gesa A. Weyhenmeyer, Roger A. Müller, Maria Norman, Lars J. Tranvik ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many boreal waters are currently becoming browner with effects on biodiversity, fish production, biogeochemical processes and drinking water quality. The question arises whether and at which speed this browning will continue under future climate change. To answer the question we predicted the absorbance (a420) in 6347 lakes and streams of the boreal region under future climate change. For the prediction we modified a numerical model for a420 spatial variation which we tested on a temporal scale by simulating a420 inter-annual variation in 48 out of the 6347 Swedish waters. We observed that inter-annual a420 variation is strongly driven by precipitation that controls the water flushing through the landscape. Using the predicted worst case climate scenario for Sweden until 2030, i.e., a 32 % precipitation increase, and assuming a 10 % increase in imports of colored substances into headwaters but no change in land-cover, we predict that a420 in the 6347 lakes and streams will, in the worst case, increase by factors between 1.1 and 7.6 with a median of 1.3. This increase implies that a420 will rise from the present 0.1–86 m−1 (median: 7.3 m−1) in the 6347 waters to 0.1–154 m−1 (median: 10.1 m−1), which can cause problems for the preparation of drinking water in a variety of waters. Our model approach clearly demonstrates that a homogenous precipitation increase results in very heterogeneous a420 changes, where lakes with a long-term mean landscape water retention time between 1 and 3 years are particularly vulnerable to climate change induced browning. Since these lake types are quite often used as drinking water resources, preparedness is needed for such waters.