Published in

American Association of Neurological Surgeons, Journal of Neurosurgery, 6(99), p. 1018-1027, 2003

DOI: 10.3171/jns.2003.99.6.1018

Links

Tools

Export citation

Search in Google Scholar

Delineating gray and white matter involvement in brain lesions: three-dimensional alignment of functional magnetic resonance and diffusion-tensor imaging. J Neurosurg 99: 1018-1027

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Question mark in circle
Published version: policy unknown
Data provided by SHERPA/RoMEO

Abstract

Object. The role of functional magnetic resonance (fMR) imaging has become increasingly important in the presurgical mapping of gray matter. Neurosurgical interventions often involve fiber bundles that connect critical functional areas. Recently, diffusion-tensor (DT) imaging has enabled the visualization of fiber bundle direction and integrity, thus providing the ability to delineate clearly white matter from gray matter tissue. The main objective of this study was to improve the presurgical assessment of critical functionality in the vicinity of brain lesions by combining DT and fMR imaging methodologies. Methods. Twenty patients with various space-occupying brain lesions underwent imaging for presurgical evaluation of motor and/or somatosensory functions. The authors focus on five patients with diverse space-occupying brain lesions. Diffusion tensor—based fiber tracking and fMR imaging activation maps were superimposed in three dimensions to visualize pyramidal tracts corresponding to motor and somatosensory regional activation. Conclusions. The combination of DT and fMR imaging for presurgical functional brain mapping provides valuable information that cannot be extracted using either method alone. The validity and sensitivity of noninvasive functional mapping for surgical guidance could be improved by considering results obtained with both methods. Furthermore, the use of three-dimensional visualization seems crucial and unique for viewing and understanding the complicated spatial relationship among the lesion, gray matter activation, and white matter fiber bundles.