Published in

Lippincott, Williams & Wilkins, Shock: Injury, Inflammation and Sepsis, 2(45), p. 184-191, 2016

DOI: 10.1097/shk.0000000000000494

Links

Tools

Export citation

Search in Google Scholar

Epha4-Fc Treatment Reduces Ischemia/Reperfusion-Induced Intestinal Injury by Inhibiting Vascular Permeability

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The inflammatory response is characterized by increased endothelial permeability, which permits the passage of fluid and inflammatory cells into interstitial spaces. The Eph/ephrin receptor ligand system plays a role in inflammation through a signaling cascade, which modifies Rho-GTPase activity. We hypothesized that blocking Eph/ephrin signaling using an EphA4-Fc would result in decreased inflammation and tissue injury in a model of ischemia/reperfusion (I/R) injury. Mice undergoing intestinal I/R pretreated with the EphA4-Fc had significantly reduced intestinal injury compared to mice injected with the control Fc. This reduction in I/R injury was accompanied by significantly reduced neutrophil infiltration, but did not affect intestinal inflammatory cytokine generation. Using microdialysis, we identified that intestinal I/R induced a marked increase in systemic vascular leakage, which was completely abrogated in EphA4-Fc-treated mice. Finally, we confirmed the direct role of Eph/ephrin signaling in endothelial leakage by demonstrating that EphA4-Fc inhibited tumor necrosis factor-α-induced vascular permeability in human umbilical vein endothelial cells. This study identifies that Eph/ephrin interaction induces proinflammatory signaling in vivo by inducing vascular leak and neutrophil infiltration, which results in tissue injury in intestinal I/R. Therefore, therapeutic targeting of Eph/ephrin interaction using inhibitors, such as EphA4-Fc, may be a novel method to prevent tissue injury in acute inflammation by influencing endothelial integrity and by controlling vascular leak.