Published in

IOP Publishing, Nanotechnology, 16(22), p. 165704

DOI: 10.1088/0957-4484/22/16/165704

Links

Tools

Export citation

Search in Google Scholar

Sb2O3nanobelt networks for excellent visible-light-range photodetectors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Excellent photoconductive properties have been found in Sb(2)O(3) nanobelts synthesized by a surfactant-assisted solvothermal method. Visible-light photodetectors have been designed from Sb(2)O(3) nanobelt networks using micrometer-wide gold wires as masks. Photodetectors show high sensitivity to visible light, high stability, and reproducibility. Fast response and decay times (<0.3 s) are comparable or even better than these parameters in many other metal oxide nanoscale photodetectors. The dominant mechanism of excellent photoconductivity is attributed to the barrier height modulations in the nanobelt-to-nanobelt contact regions. These results demonstrate that Sb(2)O(3) nanobelt networks can indeed serve as high-performance photodetectors in the visible light range.