Published in

Elsevier, European Journal of Pharmacology, 1-3(548), p. 45-52

DOI: 10.1016/j.ejphar.2006.07.032

Links

Tools

Export citation

Search in Google Scholar

Blockade of Ca2+-activated K+ channels by galantamine can also contribute to the potentiation of catecholamine secretion from chromaffin cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Galantamine is a drug in clinical use for the treatment of Alzheimer's disease, but its mechanism(s) of action remains controversial. Here we addressed the question whether galantamine could potentiate neurotransmitter release by inhibiting small conductance Ca2+ -activated K+ channels (KCa2). Galantamine potentiated catecholamine secretory responses induced by 10 s pulses of acetylcholine and high [K+]o applied to fast-superfused bovine adrenal chromaffin cell populations. Catecholamine release was significantly enhanced by galantamine although we did not find concentration dependence in the range 0.1-1 microM. The KCa2 channel blocker apamin (0.3 microM) occluded the potentiating effects of galantamine on acetylcholine-evoked secretion. Like apamin, galantamine also modified the firing of action potentials, but to a lesser extent. In addition, 1 microM galantamine reduced by 41% the KCa2 current without modifying the voltage-dependent Ca2+ currents. These results constitute the first direct evidence that galantamine can potentiate neurotransmitter release by blocking KCa2 channels, in addition to its already demonstrated capacity to mildly block acetylcholinesterase or potentiate allosterically nicotinic receptors.