Published in

American Chemical Society, Inorganic Chemistry, 18(47), p. 7951-7953, 2008

DOI: 10.1021/ic8010162

Links

Tools

Export citation

Search in Google Scholar

Aqueous Ln(III) Luminescence Agents Derived from a Tasty Precursor

Journal article published in 2008 by Christoph J. Jocher, Evan G. Moore ORCID, Jason D. Pierce, Kenneth N. Raymond
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The synthesis, characterization, and photophysical properties are reported for several Ln(III) complexes of a tetradentate chelate, 5LIO-MAM, derived from the common flavor enhancer "maltol". Eu(III), Yb(III), and Nd(III) form stable ML2 complexes in aqueous solution that emit in the red or near-infrared (NIR) upon excitation at ca. 330 nm. The synthesis, aqueous stability, and photophysical properties are reported for a novel tetradentate ligand derived from maltol, a commonly used flavor enhancer. In aqueous solution, this chelate forms stable complexes with Ln(III) cations, and sensitized emission was observed from Eu(III), Yb(III), and Nd(III). A comparison with recently reported and structurally analogous ligands reveals a slightly higher basicity but lower complex stability with Eu(III) [pEu = 14.7(1)]. A very poor metal-centered quantum yield with Eu(III) was observed (Phi(tot) = 0.04%), which can be rationalized by the similar energy of the ligand triplet state and the Eu(III) (5)D0 emissive level. Instead, sensitized emission from the Yb(III) and Nd(III) cations was observed, which emit in the NIR.