Published in

Oxford University Press (OUP), Molecular Biology and Evolution, 1(22), p. 12-20

DOI: 10.1093/molbev/msh258

Links

Tools

Export citation

Search in Google Scholar

A Globin Gene of Ancient Evolutionary Origin in Lower Vertebrates: Evidence for Two Distinct Globin Families in Animals

Journal article published in 2004 by Anja Roesner, Christine Fuchs, Thomas Hankeln, Thorsten Burmester ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hemoglobin, myoglobin, neuroglobin, and cytoglobin are four types of vertebrate globins with distinct tissue distributions and functions. Here, we report the identification of a fifth and novel globin gene from fish and amphibians, which has apparently been lost in the evolution of higher vertebrates (Amniota). Because its function is presently unknown, we tentatively call it globin X (GbX). Globin X sequences were obtained from three fish species, the zebrafish Danio rerio, the goldfish Carassius auratus, and the pufferfish Tetraodon nigroviridis, and the clawed frog Silurana tropicalis. Globin X sequences are distinct from vertebrate hemoglobins, myoglobins, neuroglobins, and cytoglobins. Globin X displays the highest identity scores with neuroglobin (approximately 26% to 35%), although it is not a neuronal protein, as revealed by RT-PCR experiments on goldfish RNA from various tissues. The distal ligand-binding and the proximal heme-binding histidines (E7 and F8), as well as the conserved phenylalanine CD1 are present in the globin X sequences, but because of extensions at the N-terminal and C-terminal, the globin X proteins are longer than the typical eight alpha-helical globins and comprise about 200 amino acids. In addition to the conserved globin introns at helix positions B12.2 and G7.0, the globin X genes contain two introns in E10.2 and H10.0. The intron in E10.2 is shifted by 1 bp in respect to the vertebrate neuroglobin gene (E11.0), providing possible evidence for an intron sliding event. Phylogenetic analyses confirm an ancient evolutionary relationship of globin X with neuroglobin and suggest the existence of two distinct globin types in the last common ancestor of Protostomia and Deuterostomia.