Published in

Taylor and Francis Group, Channels, 1(5), p. 4-8

DOI: 10.4161/chan.5.1.13846

Links

Tools

Export citation

Search in Google Scholar

The N-terminal domain of the V-ATPase subunit 'a' is regulated by pH in vitro and in vivo

Journal article published in 2011 by Reinhard Dechant, Matthias Peter ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Regulation of the activity of vacuolar ATPase (V-ATPase) is a well known, yet poorly understood phenomenon, which might underlie the contribution of V-ATPases in various cellular signaling processes.(1) In yeast, V-ATPase is regulated by glucose and contributes to activation of cAMP-dependent protein kinase A (PKA). We have recently shown that, in vivo, glucose regulates V-ATPase through cytosolic pH, suggesting that V-ATPase contains a pH sensitive subunit, which regulates assembly of the holo-complex.(2) Here, we present the purification and biochemical characterization of the N-terminal domain of subunit 'a', Vph1N, which has been suggested to act as a pH sensor in mammalian cells.(3) Interestingly, our studies demonstrate pH-dependent oligomerization of this domain in vivo and in vitro. Moreover, we identify a membrane proximal region that is required for the pH-dependent oligomerization, and suggest a speculative model for the regulation of the V-ATPase holo-complex by pH.