Published in

American Chemical Society, Journal of Physical Chemistry C, 30(111), p. 11139-11149, 2007

DOI: 10.1021/jp068541j

Links

Tools

Export citation

Search in Google Scholar

Low-Lying Exciton States Determine the Photophysics of Semiconducting Single Wall Carbon Nanotubes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A combined experimental and theoretical study of the photophysical properties and excited-state dynamics of semiconducting single-wall carbon nanotubes (SWNTs) is reported. Steady-state and time-resolved fluorescence data as a function of temperature are explained on the basis of a manifold of four low-lying singlet exciton states with kinetically controlled interconversion. Relaxation among these levels is slow and therefore Kasha's rule is not obeyed. Quantum chemical calculations based on time-dependent density functional theory complement the experimental findings. The temperature-dependence of the radiative and nonradiative rate constants are examined.