Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), p. 141211094045002

DOI: 10.1021/jp508113a

Links

Tools

Export citation

Search in Google Scholar

Solvation of a cellulose microfibril in imidazolium acetate ionic liquids: Effect of a cosolvent.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The solvation and the onset of dissolution of a cellulose Iβ microcrystal in ionic liquid media are studied by molecular simulation. Ionic liquids can dissolve large amounts of cellulose, which can later be regenerated from solution, but their high viscosity is an inconvenience. Hydrogen bonding between the anion of the ionic liquid and cellulose is the main aspect determining dissolution. Here we try to elucidate the role of a molecular cosolvent, dimethyl sulfoxide (DMSO), which is an aprotic polar compound, in the system composed of cellulose and the ionic liquid 1-butyl-3-methylimidazolium acetate. We calculated quantities related to specific interactions (mainly hydrogen bonds), conformations, and the structure of local solvation environments, both for a solvated oligomer chain of cellulose and for a model microfibril composed of 36 chains in the Iβ crystal structure. We compare two solvent systems: the pure ionic liquid and a mixed solvent with an equimolar composition in ionic liquid and DMSO. All entities are represented by detailed all-atom, fully flexible force fields. The main conclusions are that DMSO behaves as an “innocent” cosolvent, lowering the viscosity and accelerating mass transport in the system, but without interacting specifically with cellulose or disrupting the interactions between cellulose with the anions of the ionic liquid. An understanding of solvation in mixed solvents composed of ionic liquids and molecular compounds can enable the design of high-performance media for the use of biomass materials.