Published in

Elsevier, Journal of Fluorine Chemistry, (178), p. 241-248, 2015

DOI: 10.1016/j.jfluchem.2015.07.023

Links

Tools

Export citation

Search in Google Scholar

Characterization of air/water interface adsorption of a series of partially fluorinated/hydrogenated quaternary ammonium salts

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The adsorption at air/water interface of a series of partially fluorinated/hydrogenated quaternary ammonium salts was characterized by the determination of static and dynamic surface tension, critical micelle concentration, surface excess, area per molecule and Krafft temperature. In particular, the variation of these parameters was studied as a function of fluorinated and hydrogenated chain length.Modification of fluorinated and hydrogenated moieties allows to finely tune all the aforementioned physical surface properties: increasing the number of fluorinated carbon atoms boosts both effectiveness and efficiency of surfactant in reducing surface tension, kinetics of migration to interface are favored fastening reaching of equilibrium conditions, critical micelle concentration is reduced and surface excess is increased. Conversely increasing the length of the hydrogenated moiety reduces both effectiveness and efficiency of surfactant, migration to interface is slackened, c.m.c. is increased, and surface excess is depresses. Area per molecule and Krafft temperature appear to be affected mainly by the total number of carbon atoms introduced in the molecules whatever the nature of the substituent (fluorine or hydrogen).