Published in

The Company of Biologists, Journal of Cell Science, 2014

DOI: 10.1242/jcs.150011

Links

Tools

Export citation

Search in Google Scholar

Bcl-2 binds to and inhibits ryanodine receptors.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein not only counteracts apoptosis at the mitochondria by scaffolding pro-apoptotic Bcl-2-family members, but also acts at the endoplasmic reticulum, thereby controlling intracellular Ca(2+) dynamics. Bcl-2 inhibits Ca(2+) release by targeting the inositol 1,4,5-trisphosphate receptor (IP3R). Sequence analysis has revealed that the Bcl-2-binding site on the IP3R displays strong similarity with a conserved sequence present in all three ryanodine receptor (RyR) isoforms. We now report that Bcl-2 co-immunoprecipitated with RyRs in ectopic expression systems and in native rat hippocampi, indicating that endogenous RyR-Bcl-2 complexes exist. Purified RyR domains containing the putative Bcl-2-binding site bound full-length Bcl-2 in pulldown experiments and interacted with the BH4 domain of Bcl-2 in surface plasmon resonance (SPR) experiments, suggesting a direct interaction. Exogenous expression of full-length Bcl-2 or electroporation loading of the BH4 domain of Bcl-2 dampened RyR-mediated Ca(2+) release in HEK293 cell models. Finally, introducing the BH4-domain peptide into hippocampal neurons through a patch pipette decreased RyR-mediated Ca(2+) release. In conclusion, this study identifies Bcl-2 as a new inhibitor of RyR-based intracellular Ca(2+)-release channels.