Published in

Taylor and Francis Group, Plant Signaling & Behavior, 3(10), p. e989768

DOI: 10.4161/15592324.2014.989768

Links

Tools

Export citation

Search in Google Scholar

The Arabidopsis ethylene overproducer mutanteto1-3displays enhanced freezing tolerance

Journal article published in 2015 by Rafael Catalá ORCID, Julio Salinas
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Low temperature is one of the most important environmental stresses constraining plant development and distribution. Plants have evolved complex adaptive mechanisms to face and survive freezing temperatures. Different signaling pathways regulating plant response to cold have been described, and some of them are mediated by hormones. Recently, we reported that ethylene (ET) acts as a positive regulator of plant freezing tolerance through the activation of cold-induced gene expression, including the CBF-regulon. Here, we present data demonstrating that the Arabidopsis ET overproducer mutant eto1-3 has enhanced freezing tolerance. Moreover, we also show that this mutant exhibits increased accumulation of CBF1, 2 and 3 transcripts, which should account for its tolerant phenotype. All these results constitute new genetic evidence supporting an important role for ET in plant response to low temperature by mediating the CBF-dependent signaling pathway.