Published in

SAGE Publications, Antiviral Chemistry and Chemotherapy, 6(4), p. 361-368, 1993

DOI: 10.1177/095632029300400608

Links

Tools

Export citation

Search in Google Scholar

3,4-Dihydro-2-Alkoxy-6-Benzyl-4-Oxopyrimidines (DABOs): A New Class of Specific Inhibitors of Human Immunodeficiency Virus Type 1

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A series of novel 3,4-dihydro-6-benzyl-4-oxopyrimidines substituted at both the C-5 and the C-2 positions were synthesized as potential anti-HIV agents. Preparation of the title compounds was achieved by condensation of O-methylisourea with methyl 2-alkyl-4-phenylacetylacetate and subsequent displacement of the methoxy group by reaction with a series of linear, ramified and cyclic alkoxy groups containing from three to six carbon units. Methyl 2-alkyl-4-phenylacetylacetates were prepared by alkylation of methyl 4-phenylacetylacetate, which was obtained starting from Meldrum's acid and phenacetyl chloride. Acid hydrolysis of 3,4-dihydro-6-benzyl-2-methoxy-4-oxopyrimidines furnished the corresponding 1,2,3,4-tetrahydro-6-benzyl-2,4-dioxopyrimidines. In acutely infected MT-4 cells, compounds 3e, 3o, 3q and 3r showed an anti-HIV-1 activity as potent and/or selective as HEPT and ddl. Unlike HEPT, the replacement of a methyl for an hydrogen atom at position C-5 of 3,4-dihydro-2-alkoxy-6-benzyl-4-oxopyrimidines (DABOs) did not abolish the antiviral activity, as well as the substitution of the C-5 methyl for an ethyl group did not increase the potency. However, similarly to HEPT and its derivatives, DABOs targeted the HIV-1 reverse transcriptase and neither inhibited the multiplication of HIV-2 in acutely infected MT-4 cells, nor that of HIV-1 in chronically infected H9/IIIB cells.