Published in

SAGE Publications, Cephalalgia, 9(35), p. 783-791, 2014

DOI: 10.1177/0333102414559732

Links

Tools

Export citation

Search in Google Scholar

Evidence for brain morphometric changes during the migraine cycle: A magnetic resonance-based morphometry study

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Neurophysiological investigations have demonstrated that there are unique fluctuations in the migraine brain functional activity between the ictal and interictal periods. Here we investigated the possibility that there are fluctuations over time also in whole brain morphometry of patients affected by episodic migraine without aura (MO). Twenty-four patients with untreated MO underwent 3T MRI scans during ( n = 10) or between attacks ( n = 14) and were compared to a group of 15 healthy volunteers (HVs). We then performed voxel-based-morphometry (VBM) analysis of structural T1-weighted MRI scans to determine if changes in brain structure were observed over the course of the migraine cycle. Interictally, MO patients had a significantly lower gray matter (GM) density within the right inferior parietal lobule, right temporal inferior gyrus, right superior temporal gyrus, and left temporal pole than did HVs. Ictally, GM density increased within the left temporal pole, bilateral insula, and right lenticular nuclei, but no areas exhibited decreased GM density. These morphometric GM changes between ictal and interictal phases suggest that abnormal structural plasticity may be an important mechanism of migraine pathology. Given the functional neuroanatomy of these areas, our findings suggest that migraine is a condition associated with global dysfunction of multisensory integration and memory processing.