Published in

American Chemical Society, Journal of Proteome Research, 10(8), p. 4844-4850, 2009

DOI: 10.1021/pr9004162

Links

Tools

Export citation

Search in Google Scholar

Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Colorectal carcinogenesis involves the overexpression of many immediate-early response genes associated with growth and inflammation, which significantly alters downstream protein synthesis and small-molecule metabolite production. We have performed a serum metabolic analysis to test the hypothesis that the distinct metabolite profiles of malignant tumors are reflected in biofluids. In this study, we have analyzed the serum metabolites from 64 colorectal cancer (CRC) patients and 65 healthy controls using gas chromatography time-of-flight mass spectrometry (GC-TOFMS) and Acquity ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (Acquity UPLC-QTOFMS). Orthogonal partial least-squares discriminate analysis (OPLS-DA) models generated from GC-TOFMS and UPLC-QTOFMS metabolic profile data showed robust discrimination from CRC patients and healthy controls. A total of 33 differential metabolites were identified using these two analytical platforms, five of which were detected in both instruments. These metabolites potentially reveal perturbation of glycolysis, arginine and proline metabolism, fatty acid metabolism and oleamide metabolism, associated with CRC morbidity. These results suggest that serum metabolic profiling has great potential in detecting CRC and helping to understand its underlying mechanisms.