Published in

American Chemical Society, The Journal of Physical Chemistry A, 50(111), p. 13264-13271, 2007

DOI: 10.1021/jp0764079

Links

Tools

Export citation

Search in Google Scholar

Performance of the Spin-Flip and Multireference Methods for Bond Breaking in Hydrocarbons: A Benchmark Study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Benchmark results for spin-flip (SF) coupled-cluster and multireference (MR) methods for bond-breaking in hydrocarbons are presented. The nonparallelity errors (NPEs), which are defined as an absolute value of the difference between the maximum and minimum values of the errors in the potential energy along bond-breaking curves, are analyzed for (i) the entire range of nuclear distortions from equilibrium to the dissociation limit and (ii) in the intermediate range (2.5-4.5 A), which is the most relevant for kinetics modeling. For methane, the spin-flip and MR results are compared against full configuration interaction (FCI). For the entire potential energy curves, the NPEs for the SF model with single and double substitutions (SF-CCSD) are slightly less than 3 kcal/mol. Inclusion of triple excitations reduces the NPEs to 0.32 kcal/mol. The corresponding NPEs for the MR-CI are less than 1 kcal/mol, while those of multireference perturbation theory are slightly larger (1.2 kcal/mol). The NPEs in the intermediate range are smaller for all of the methods. The largest errors of 0.35 kcal/mol are observed, surprisingly, for a spin-flip approach that includes triple excitations, while MR-CI, CASPT2, and SF-CCSD curves are very close to each other and are within 0.1-0.2 kcal/mol of FCI. For a larger basis set, the difference between MR-CI and CASPT2 is about 0.2 kcal/mol, while SF-CCSD is within 0.4 kcal/mol of MR-CI. For the C-C bond breaking in ethane, the results of the SF-CCSD are within 1 kcal/mol of MR-CI for the entire curve and within 0.4 kcal/mol in the intermediate region. The corresponding NPEs for CASPT2 are 1.8 and 0.4 kcal/mol, respectively. Including the effect of triples by energy-additivity schemes is found to be insignificant for the intermediate region. For the entire range of nuclear separations, sufficiently large basis sets are required to avoid artifacts at small internuclear separations.